

CX8831CB/ USB PD多协议集成降压芯片

CX8831CB

USB PD多协议集成降压芯片

产

品品

说

明

书

CX8831CB/USB PD多协议集成降压芯片

概述

CX8831CB是一款内置多种快充协议的同步降压转换器. 支持 USB Type-C和PD3.1 协议,高通 QC2.0/3.0/3.0+协议,华为 FCP/SCP/HVSCP协议,V00C 协议,联发科 PE2.0 协议,三星 AFC 协议,USB BC1.2 DCP 协议以及 Apple 2.4A 充电规范,为车载充电端口、各种快充适配器、智能排插等供电设备提供完整的解决方案。

CX8831CB采用 COT 控制模式,内置电流采样电路和纹波补偿电路。内置双 N 型低阻抗功率开关管,24V 输入9V3A 输出时转换效率高达 95.6%。

CX8831CB 输入工作电压最高到 36V,输出电压范围是 3.3V 到 21V,能提供最大 45W 的输出功率,根据识别到的快充协议调整输出电压和电流。

CX8831CB能自适应输入电压,依据输入电压自动调节输出功率。

CX8831CB的输出具有 CV/CC 特性,当输出电流小于设定值,输出 CV 模式,输出电压恒定;当输出电流大于设定值,输出 CC 模式,输出电压降低。

CX8831CB 带有线缆补偿功能,随着输出电流增大相应的提高输出电压,来补偿因线缆阻抗引起的电压下降。 CX8831CB 支持二次烧录,可实现在线升级。

应用

- 多端口快速充电器
- USB 充电设备
- 户外储能设备

特点

- 同步开关降压转换器 内置 29mΩ/27mΩ 功率开关管 输入工作电压范围 6-36V 转换效率高达97% 支持 CV/CC 模式 支持软启动、满载启动
- 支持线损补偿功能
- 支持最高 180mΩ内阻线缆通信
- 支持在线升级
- 具备多重安全保护 过压/欠压保护
 过流保护、短路保护
 过温降功率以及二次过温保护
- ESD 特性±4KV

- 支持 USB Power Delivery(PD)3.1

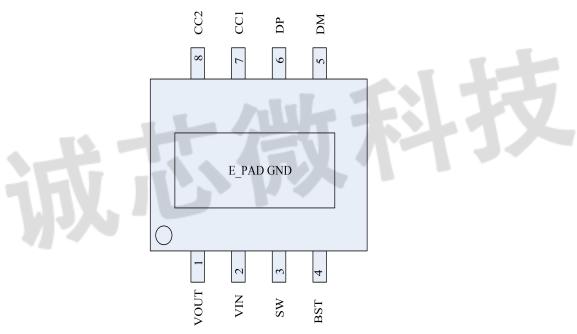
 FPDO 可配置: 5V/9V/12V/15V/20V

 OUT MAX: 45W

 APDO 可配置: 5V/9V/15V/20V Prog
- 支持多种快充协议Quick Charge 2.0/3.0/3.0+

小米 CHARGE TURBO 27W 协议 华为 FCP/HVSCP 协议(支持华为优先) 三星 AFC 5V/9V/12V 协议 OPPO VOOC 协议 MTK PE2.0 协议

www.cxwic.com 第 2 页 共 11 页 版本 V1.1

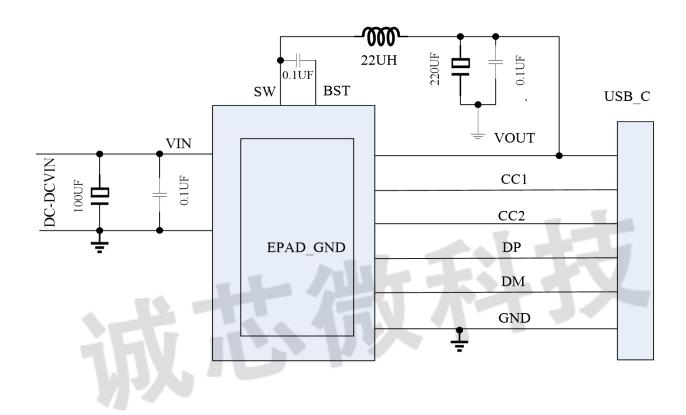

CX8831CB/ USB PD多协议集成降压芯片

订购信息

芯片型号	封装型号	引脚数量	包装方法	顶标	应用
CX8831CB	ESOP-8L	8	编带	CX8831CB	单C口应用

注: 顶标二排丝印为生产周期 (XYYWW) 会根据生产的时间推移,而跟着更改。

引脚定义



PIN NO	引脚名称	引脚功能说明		
1	VOUT	输出电压反馈引脚。		
2	VIN	输入电压引脚,靠近 IC,需要放置滤波电容,推荐 100uF。		
3	SW	芯片开关引脚,连接电感。		
4	BST	自举引脚,靠近芯片 BST 与 SW 引脚间放置 0.1uF,上管栅极提供驱动。		
5	DM	USB_A 快充识别信号 DM。		
6	DP	USB_A 快充识别信号 DP。		
7	CC2	Type-C 检测引脚 CC2。		
9	CC1	Type-C 检测引脚 CC1。		
E-PAD	PGND	功率地和散热地。		

CX8831CB/ USB PD多协议集成降压芯片

典型应用

产品功率及 PDO

料号	PDO 和APDO 配置	包装
CX8831CB_B	PDO:5V/3A, 9V/2.22A, 12V/1.67A	
	PDO:5V/3A, 9V/2.22A, 12V/1.67A	
CX8831CB BP	APDO1: 3.3-5.9V/3A	
_	APDO2: 3.3-11V/1.8A	
	PDO:5V/3A, 9V/2.77A, 12V/2.08A	
CX8831CB BP25	APDO1: 3.3-5.9V/3A	4K/盘
_	APDO2: 3.3-11V/2.25A	
	PDO:5V/3A, 9V/3A, 12V/2.5A	
CX8831CB_BP30	APDO1: 3.3-5.9V/3A	
_	APDO2: 3.3-11V/2.75A	

CX8831CB/ USB PD多协议集成降压芯片

规格参数

1) 极限工作参数

参数		最小值	最大值	单位
	V _{IN}	-0.3	40	V
	$V_{\sf SW}$	-0.3	V _{IN}	V
耐压	V_{BST}	V _{sw} -0.3	V _{sw} +6	V
	CC1/CC2	-0.3	21	V
	DM/DP	-0.3	6	V
结温	TJ	-40	150	°C
存储温度	T _{STG}	-65	150	°C
结温与环境温度之间 的热阻	Reja	. 444	43	°C/W

注: 1)超出极限工作范围值可能会造成器件永久性损坏。长期工作在极限额定值下可能会影响器件的可靠性。

2) ESD 性能

符号	参数	值	单位
V _{ESD}	НВМ	±4000	V

注: 2) ESD 测试基于人体放电模型 (HBM)

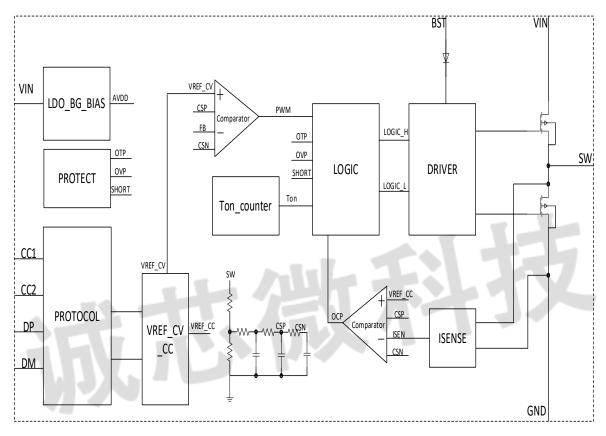
3)推荐工作条件

	参数		参数 最小值 典型值		典型值	最大值	单位
V _{IN}	输入电压		12/24		V		
L	电感		22		μF		
Cin	输入电容		100		μF		
Соит	输出电容		220		μF		
TA	工作环境温度	-40		125	°C		

CX8831CB/ USB PD多协议集成降压芯片

4) 电气特性(下述参数均在该条件下取得: V_{IN} =12V, V_{OUT} =5V, L=22uH, T_a =25°C)

Parameters	Symbol	Condition	Min	Тур	Max	Unit
VIN 欠压电流	luvlo	V _{IN} =6V		400		uA
静态工作电流	I _{NOSW}	V _{IN} =12V , V _{OUT} =5V		2		mA
输入欠压锁定上门限	V _{UVLO_UP}			7.3		V
输入欠压锁定下门限	V _{UVLO_DOW}			6.1		V
输入欠压锁定迟滞量	V _{UVLO_HYS}			1.2		V
输入过压保护	V _{IN_OVP}			36		V
输入过压保护迟滞量	VIN_OVP_HYS			3.2		V
上管导通阻抗	R _{DSON_H}		4	29		mΩ
下管导通阻抗	R _{DSON_L}		4	27	M	mΩ
. 12	41	V _{IN} =12/24V , V _{OUT} =5V	5.00	5.05	5.10	V
		V _{IN} =12/24V , V _{OUT} =9V	9.00	9.09	9.18	V
)	. //	V _{IN} =12 , V _{OUT} =12V		11.67		V
空载输出电压	V _{оит}	V _{IN} =24V , V _{OUT} =12V	12.00	12.12	12.24	V
		V _{IN} =24V , V _{OUT} =15V	15.00	15.15	15.30	V
		V _{IN} =24V , V _{OUT} =20V	20.00	20.20	20.40	V
工作频率	Fosc			100		kHz
最大占空比	D _{MAX}			97		%
最小导通时间	Ton			200		nS
输出电压调压 step	V _{STEP}			20		mV
		V _{IN} =12V/24V , 3.3V≤V _{OUT} ≤8.8V		3		A
		V _{IN} =12V/24V, 9V≤V _{OUT} ≤11.8V		3		A
恒流模式最大输出电流	Icc	V _{IN} =24V, 12V≤V _{OUT} ≤14.8V		3		А
		V _{IN} =24V,				A
		15V≤V _{OUT} ≤20V		2.23		


CX8831CB/ USB PD多协议集成降压芯片

输出电流范围	Іоит	根据协议限制CC阈值	0.6		3.6	А
输出线补电压	V _{СОМР}	9V 以上输出电压关闭 线补功能		50		mV/A
过温关断温度	T _{SD}			155		°C
过温关断迟滞量	T _{SD_HYS}			19		°C
输出电压短路检测阈值	V _{оит}			3		V
输出电压短路计时	T _{SHORT}			4.6		mS
输出电压短路打嗝 间隔时间	Тнісир			900		mS
VALLEY OCP	I _{OCP}			4.2		А
轻载检测阈值	ILL	MIL		200		mA
轻载检测判断时间	Tıı	7-1		1		S
CC 3A上拉电阻	Rp	VDD=5V		10		kΩ
DFP 锁定检测阈值	V _{DET1}	检测阈值范围上限		2.6		V
DFF	V _{DET2}	检测阈值范围下限		0.8		V
CCTX电平	V_{swing}			1.15		V
BMC TX 上升沿时	T _{rise}		300			nS
BMC TX 下降沿时	T_{fall}		300			nS
APPLE 2.4A						
DPDM 输出电压	V _{DP} /V _{DM}			2.7		V
FCP						
DM TX 电平	V _{TX_FCP}			1.85		V
	V _{RX1_FCP}	逻辑1 检测阈值		1.2		V
RX 检测阈值	V _{RX2_FCP}	逻辑0 检测阈值		0.8		V
VOOC			•		•	
DP/DM TX 电平	V _{TX_VOOC}			3.6		V

CX8831CB/USB PD多协议集成降压芯片

功能框图

CX8831CB内部功能框图

功能描述

概述

CX8831CB是一款内置多种快充协议的同步降压转换器. 支持 USB Type-C 和 PD3.1 协议,高通 QC2.0/3.0/3.0+协议,华为 FCP/SCP/HVSCP 协议,VOOC 协议,联发科 PE2.0 协议,三星 AFC 协议,USB BC1.2 DCP 协议以及 Apple 2.4A 充电规范,为车载充电端口、各种快充适配器、智能排插等供电设备提供完整的解决方案。VIN 电压检测

CX8831CB 上电时,芯片检测VIN 电压范围,如果 VIN 高于 18V,则锁定此检测值,输出响应 15V 和 20V,如果 VIN 低于 18V,则锁定之后,输出电压最高只响应到 12V。 上电之后,芯片锁定 VIN 检测值,除非复位,否则此锁定值不变。

OVP 保护

CX8831CB 检测VIN 电压, VIN 高于36V时,则VIN OVP=1,关闭输出。当VIN 降低到33V时芯片重新启动。

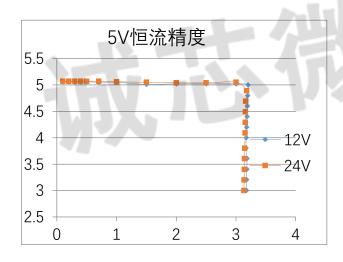
OTP保护

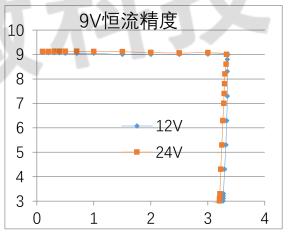
芯片内部集成OTP温度保护, 当芯片温度超过155℃时, 关闭输出, 迟滞20℃, 芯片重新启动。

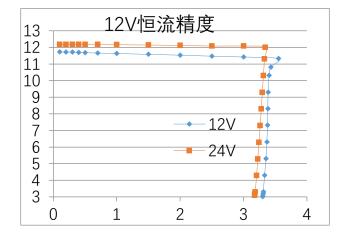
CX8831CB/ USB PD多协议集成降压芯片

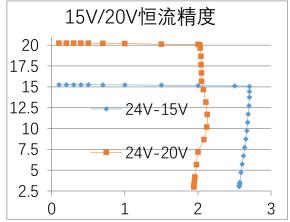
短路及限流保护

CX8831CB 具有多重电流保护机制: (1)上电启动阶段,芯片通过 cycle by cycle 限流,将电感电流谷值限制在 4.2A 左右,限流的同时,能够确保负载3A 带载启动。(2)CC 恒流功能将输出电流限制在设定的恒流点,当负载加重,则降低输出电压。(3)芯片检测到输出电压低于3V,芯片关闭输出,900mS 后重新启动。


8bit ADC


CX8831CB 内部集成8 bit ADC,实时采样输出电流以及输入/输出电压信息.


CV/CC 功能


CX8831CB 根据协议需求,通过调整 VREF_CV 电压来调节输出电压,每个调压步进为 20mV,输出电压范围 3.3V~21V。

芯片通过采样 Low side 功率管导通时的压降来检测输出电流,与 VREF_CC 的比较来实 现CC 功能。实测芯片的CC 恒流精度曲线如下图所示:

CX8831CB/ USB PD多协议集成降压芯片

USB Power Delivery 控制器

USB Power Delivery (PD) 控制器提供了USB PD 协议的物理层(PHY)功能:包含信号发送 模块和信号接收模块,所有的通信都是半双工。物理层实现通信冲突规避,最小化通信的误码率。

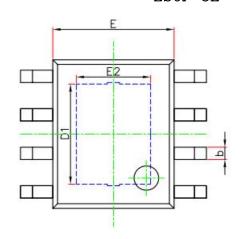
信号发送模块具有以下功能:

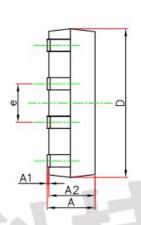
- 接收来自协议层封装好的数据包
- 计算CRC 校验码并附加在数据包上
- 对包含CRC 校验码的数据包进行编码
- 在CC 上使用BMC 编码传输数据包(Preamble, SOP*, payload, CRC, EOP) 信号接收模块具有以下功能:
- 恢复时钟并从Preamble 锁定数据包
- 检测SOP*格式
- 解码带CRC 的数据包
- 检测EOP 并进行CRC 校验
 - CRC 如果校验成功,将数据包传输至协议层
 - CRC 如果校验失败,重新刷新接收到的数据

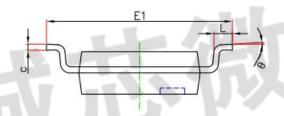
如果需要进一步提升 CX8831CB 转换效率,可以采用以下措施:

- 1. 把 100uF 输入电解电容换成 4 个 22uF 贴片陶瓷电容;
- 2. 采用低 ESR 电感:
- 3. 采用多层板 PCB。
- 4. 提升产品导热性,加快散热

Layout 注意事项


- 1. 输入滤波电容, 尤其是高频去耦小电容要尽可能的靠近输入引脚 VIN 放置, 以提高滤波效果。
- 2. 电感 L 应当靠近 SW 引脚, 以降低电磁噪声。
- 3. 输出电容 Cour 要靠近电感 L 放置。
- 4. 输入电容和输出电容的地线连接要尽可能的在一点和系统的地线连接起来。




CX8831CB/ USB PD多协议集成降压芯片

封装尺寸

ESOP-8L

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Syllibol	Min.	Max.	Min.	Max.	
Α	1.300	1.700	0.051	0.067	
A1	0.000	0.100	0.000	0.004	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
D1	3.202	3.402	0.126	0.134	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
E2	2.313	2.513	0.091	0.099	
е	1.270(BSC)		0.050	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	